

ENVIRONMENTAL FRAMEWORK TO VISUALIZE EMERGENT ARTIFICIAL FOREST ECOSYSTEMS AND DIFFERENTIAL EVOLUTION FOR PARAMETERIZED PROCEDURAL WOODY PLANT MODELS RECONSTRUCTION

ALES.ZAMUDA@UNI-MB.SI

PROBLEM

- → The problem tackled covers modeling of forests and trees in a virtual environment on a computer, i.e. a domain of artificial tree and ecosystem animation.
- → The technology platform is computer science support in forest-based sector.
- → The forest ecosystem animated here, includes a tree growth simulation model for a landscape-sized area.
- → Individual modeling of tree species morphology, view, and ecosystem living conditions is included with the simulator.
- → A novel tree modeling using differential evolution also enables reconstruction of morphological tree models from multi-view photography images.
- → The aim of this presentation is to connect with other researchers to gather new research data from forest-based sector and to form a broader project team on common implementation level for EU 20-20-20.

CONTRIBUTIONS

Artificial tree distribution confirmation:

- visually, the natural look is confirmed from rendered sequences, and
- statistically, using population dynamics from graphs for tree species.

Several patterns emerge permanently:

- the number of trees in empty ecosystem increase exponentially and
- trees begin to grow in communities.

METHOD

An interconnected application software system develops and animates a spontaneous afforestation process within an environment. The system considers several environmental properties (see Results, top right) and combines computer animation with artificial life.

- 1. Simulates woody plant forests for ecosystem visualization (see Results, top left).
- 2. Growth of individual trees is animated (see Results, left in middle): from development of branch complexity to per-leaf precision. This allows a much realistic perception of the emerging ecosystem.
- 3. A flexible and adaptable **procedural 3D model** is used to visualize trees.
- 4. The visualization of trees is sped up by **progres**sively lower-details proportional to the distance from a certain point of view.

RESULTS

- Afforestation over several centuries,
- simulates tree locations and maturity.
- Rendering forest computer animation:
 - shows yearly iterative afforestation of natural environments and
 - for visual analysis of landscape natural look credibility.
- Tree growth is simulated and the simulation factors are biologically inspired.
- A bottom-up agent model emerges an artificial tree distribution.
- The spontaneous afforestation process
 - is modeled as an ecosystem,
 - within, trees struggle for survival on terrain living conditions.

BACKGROUND: TREE GEOMETRY

The novel tree geometry reconstruction approach:

• a new approach for reconstruction of procedural three-dimensional models of trees [2].

seven images bottom right) visualize emergent forest ecosystems. The procedural tree model recursively computes all building parts of a three-dimensional

tree structure by applying a fixed procedure on a given large set of numerically coded input parameters. The parameterized procedural model is thereby used for computer animation. Differential evolution algorithm [2] recon-

structs a tree model by fitting a set of its rendered images to a set of given reference images, thereby evolving a parameterized procedural model from the reference images.

• The comparison is done on **pixel level** of the images through the integration of distances to the nearest similar pixels.

• The obtained results show that the presented approach is viable for modeling of woody plants for computer animation by evolution of the numerically coded procedural model.

FUTURE & CHALLENGES

Future challenges to address:

- Fit models of natural laws and tree interactions to real-world data.
 - Impact of **pollution** to forest growth.
- In-depth analysis of complex patterns emerging from local behaviors.
- Impact of tree growth mechanism on the global tree distribution.
- Simulator engine for a virtual reality.
- Use in energy policy and sustainable development.
- Low-carbon economy planning including EU 20-20-20 goals of

- greenhouse gas reduction and
- energy efficiency improvement.

REFERENCES

- [1] A. Zamuda and J. Brest, "Environmental framework to visualize emergent artificial forest ecosystems," Information Sciences, vol. 220, pp. 522–540, 2013.
- [2] A. Zamuda, J. Brest, B. Bošković, and V. Žumer, "Differential Evolution for Parameterized Procedural Woody Plant Models Reconstruction," Applied Soft Computing, vol. 11, pp. 4904–4912, 2011.

AWARDS

gold

IEEE CEC 2009

1st place

UM 2008 IEEE SPCR8 2007 best research finals

SOURCE CODE

The source code, executables with an interactive interface, demonstration videos, documentation with journals and conferences publications at

http://ecomod.sourceforge.net/