
Advantages of dynamic method-oriented mechanism in a

statically typed object-oriented programming language Z0

Sašo Greiner, Janez Brest, Viljem Žumer

University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova 17, 2000 Maribor, Slovenia

saso.greiner@uni-mb.si

Abstract

Z0 is a simple class-based pure object-

oriented programming language. It was ba-

sically designed as an experimental language

that would provide a static yet expressive

type system, method dynamics and pure ob-

ject abstraction philosophy. Classes define

their state explicitly and exclusively through

method abstractions. There are no instance

variables because Z0 aims to achieve a clean

and strict method-based modification mecha-

nism for objects.

Dynamic features that enable method-based

calculation between objects have been incor-

porated in a way that conforms to the lan-

guage’s strong static type system. This has

been done with a method update mechanism

that is fully checkable at compile-time and re-

quires no runtime overhead in invocation.

Keywords: language design, compilation,
type systems

1 Introduction to the language

It is a well known fact that certain lan-
guage mechanisms attributable to dynamic
languages such as Smalltalk [5] or Self [12] are
hardly ever found in languages with a static
type system. This is not surprising as dy-
namic mechanisms such as dynamic typing,
runtime code optimisation, method and/or
class modification tend to introduce a de-
manding task for the otherwise robust static
type checker. Another problem arises when
the language is not interpreted on parse tree
level but is compiled into an intermediate (eg.

bytecode for JVM or CLR) or actual code for
a target processor. It is one thing to replace
superclass in symbol table of a parse tree in-
terpreter and a whole different scenario when
the code is compiled into instructions and
running in a virtual machine environment.
The language Z0 [6] was designed to be a safe
and efficient alternative to interpreted dy-
namically typed programming languages. Z0

enables safe static typing with dynamic ex-
tensions through type Self (extensively de-
scribed in [2]). Some of the most popular
industrial strength languages, Java and C
Sharp among them, provide merely invariant
type systems even though we know for a fact
that much more flexibility can be achieved
within static typing systems. Z0 provides
covariant changes in return types and con-
travariant changes in argument types. This is
as far as it gets with type changes within the
class hierarchy. One of the language features
is a pure reference-based object model which
implies that all values, primitive and other
are objects. The implementation of methods
for primitive classes is, however, quite dif-
ferent. All method invocations upon values
of primitive types (such as plus method for
integral types) are compiled into virtual in-
structions which realise that method’s func-
tionality. This means these (static, “hard-
wired”) methods execute quickly, without
any overhead of virtual invocation. The exe-
cution environment of Z0 consists of objects
whether they represent integral values or
first-class program control constructs such as
blocks, methods, or loops which are of course
storable values as well. Object model of Z0

has been designed to be concise and straight-

forward. Classes are used for the description
of runtime objects. The entire class hierarchy
is situated on one principal class – Object.
Every class implicitly inherits functionality
from Object. Z0 is certainly unorthodox
in comparison with most class-based object-
oriented languages because the classes de-
clare no explicit instance variables to repre-
sent object’s state at runtime. In contrast,
classes declare only methods. This implies
that the object’s state is given exclusively
through methods. However, Z0 is an impera-
tive language and variables are provided in
methods. Because class instance variables
have been promoted to methods a mecha-
nism for dynamic method update is crucial.
This approach has mainly been inspired by
the idea of a seemingly “stateless” philosophy
for runtime objects in a compiled statically
typed programming language. Methods have
the ability to be modified and updated as
straightforwardly as local variables. Methods
too are first-class values which means they
can be passed as arguments and returned
from functions.
Z0 implements a descendant-driven multiple
inheritance model with uncomplicated rules
for overriding. Because execution of byte
code is much more efficient than interpreta-
tion, the language is compiled. The under-
lying execution platform of Z0 is a fully im-
plemented virtual machine environment sim-
ilar to that of Java (JVM [10]). Empirical
results show that execution time is compa-
rable to JVM. Section 2 describes a strict
method-oriented idea of an object and the
advantages of such representation. Two vari-
ations of method modification are presented
– one with explicit method update mecha-
nism built into the language and the other
which is feasible through reflection mechan-
ics of the virtual machine. The first variation
is presented in section 2, and the second in
section 3. Section 4 gives a practical example
of how runtime information may be incorpo-
rated into method optimisation. Section 5
provides a few notes on implementation de-
tails of method update facility. Related work
and ideas are presented in section 6 and sec-
tion 7 finally concludes the paper.

2 A strict method-oriented view

of an object and method-update

mechanism

A class in Z0 declares only methods, not
variables as is the case with Java, C sharp
or C++. This exhibits a cleaner approach
to object-orientation because the only opera-
tion upon object is method invocation. Class
fields (instance variables) and methods are
unified into a single state abstraction mech-
anisms. This philosophy yields a higher de-
gree of abstraction because we do not require
any knowledge of how object’s state is rep-
resented. We only need to know the proto-
col (interface) to which object conforms in
its messages. Unification of methods and
fields serves as a considerate basis for a sim-
pler and better suited formal model of lan-
guage because there is no ontological distinc-
tion between the two. Consider a code snip-
pet bellow which shows a distinction of a 2D
point class written in Java (JavaPoint) and
in Z0 (ZPoint). Java defines state explicitly
through instance variables x and y which are
modified via methods get and set. Z0 on
the other hand defines only methods get and
set and thus blurs the state into method ab-
stractions.

class JavaPoint{
public int getX(){

return x;

}
public int getY(){

return y;

}
public void setX(int _x){

x = _x;

}
public void setY(int _y){
y = _y;

}
private int x, y;

}

class ZPoint{
restricted getX: Integer{

return 0;

}
restricted getY: Integer{

return 0;

}
restricted setX(Integer _x){

method getX(Integer x)={
return _x;

}; // method

}
restricted setY(Integer _y){

method getY(Integer y)={
return _y;

}; // method

}
}

As can be seen, Z0 defines object’s state
as reflected actively by the getX and getY

methods which are modified to return the
new value upon each invocation. As is the
case in Java, all methods are virtual unless
explicitly declared static. Method is updated
using the method keyword which expects
method name and the new definition. Right-
hand side is a method block or method
name from another class. Method update
mechanism works for member methods and
those declared in other classes. Another
fact that should be explained briefly is the
restricted access modifier not found in
Java or C++. A restricted method is in fact
a publicly accessible method that cannot be
modified.
In Z0 programming philosophy we tend to
think about objects as dynamic entities that
perform action rather than concern ourselves
with what they contain. Methods are a more
general concept than fields so fields may be
promoted to methods. Because methods are
the only way to reflect object’s state there
must be a way to modify object’s state by
modifying its methods. An implemented
method update mechanism is able to update
(replace) a method of an object at runtime
in a type-safe way so that the consistency
of method signature remains intact. Meta
architecture will also allow replacing meth-
ods on class level which will be type safe
because only method implementations will
be modified. As is the case with instance
level replacement, method signatures will
have to remain compatible so that class
structure remains consistent. It becomes
obvious that such a mechanism exhibits a
lot of advantages over “fixed” (immutable)
methods. Take for example a method which
has been constructed by the programmer

to provide some functionality. As it often
happens, program designers cannot take into
account every possibility that can occur at
runtime. Frequently, certain parameters and
knowledge that could not be ascertained at
compilation time only become available when
the program is already running. A thought
often repeated is then: if I had known that,
I would have written the code differently.
In Z0 one can take runtime parameters,
whatever those may be, into account and
tailor a method as needed. Another aspect
that benefits from this ability is runtime
code specialisation. By employing runtime
information and actual data, a code may
be specialised for some rare or extreme case
which could not be predicted at compile
time. Z0 allows not only the complete
replacement of a method at runtime but also
more fine-grained modifications. Method
consists of an outer block and subblocks
which are all first-class values. This means
we can modify any block inside a method.
To harness the full functionality of this idea,
a meta-level architecture that will reify a
meta object protocol (MOP) for Z0 is being
implemented at the time of this writing.
Clearly, “only” introspective (readonly)
reflection as is the case in Java and C Sharp
does not suffice. Mechanisms that can alter
runtime information are needed.
Runtime code specialisation also benefits
from the ability of altering a method’s
functionality. Methods are no longer class
specific but bound to runtime objects.
Method descriptors (pointers) must be
stored inside object because two objects
of the same class may have their methods
altered independently. The most important
fact about method update mechanism is that
it can be fully type checked at compile-time.
Method updating is thus a dynamic yet safe
extension to the static type system of the
language.

3 Method modification via first-

class language constructs

As has been said earlier, in addition to replac-
ing entire methods they may also be modified
with a more fine-grain control. Z0 includes
builtin types for control structures such as
blocks, iterative statements, and if state-
ment. All language control constructs, which
have been made very similar to those in C++
and Java, are used in a straightforward man-
ner. Since all constructs are objects, they
may be stored, passed as arguments, and re-
turned from functions. A method is in fact
just a named block. A method has signa-
ture consisting of name and parameter types
and one block which corresponds to method
body. Method block contains normal lan-
guage expressions and statements as well as
other nested blocks. Blocks are represented
under the notion of closures. A closure is
simply a piece of code with its own environ-
ment. But since block (closure) is an ob-
ject, it makes sense to make blocks modifi-
able and replaceable. Block is the smallest
modifiable unit of execution in Z0. You can-
not replace an expression in a block (at least
not at the time of this writing) but you can
replace any nested block inside parent block.
This gives the possibility of modifying meth-
ods at block level which offers much finer con-
trol than changing entire methods. Because
of Z0’s pure reference model, control struc-
tures such as blocks and loops contain refer-
ences to other blocks. A while loop for ex-
ample contains reference to conditional block
and the body block. Meta level computation
for while loop will therefore allow to manipu-
late both conditional as well as body block of
the loop. Objectisation of control constructs
is vital in dynamic manipulation of program
control flow. It should be noted that meta
architecture plays a crucial role here as it
serves as an abstraction interface layer be-
tween high level programming environment
and virtual execution environment. The Z0

meta architecture, when fully implemented,
will allow almost unlimited manipulation of
runtime object environment. It should be
clear why we decided to make methods mod-
ifiable in two different ways. Direct modifi-

cation/replacement is needed because objects
exhibit their state exclusively through meth-
ods. Such modification is therefore more nat-
ural, cleaner, and quicker. But if we want
specific, fine-tuned modification, we resort
to reflection mechanisms. Method closures
are dealt with through the Method metaclass.
The functionality and the strength of express-
ibility of this class directly reflect the capa-
bilities of Z0 virtual machine. Let us sum up
a part of functionality of Method metaclass
currently supported by the virtual machine:

class Method{
public Method;

restricted getName: String;

restricted getReturnType : Class;

restricted getParameterTypes: Vector;

restricted getClosure: Closure;

restricted isFunction: Boolean;

......

}

Instance of class Method represents a run-
time method abstraction. As seen from
the class definition, the method specific
to modification mechanism is getClosure

which returns an instance of method’s block.
Closure class then defines the methods such
as getNestedClosures which returns a vec-
tor of all closures nested within this block and
setClosure which replaces a specific nested
block.
A drawback is that the architecture of a com-
piled language is susceptible to certain limi-
tations imposed by the fact that the code is
compiled and executed in a virtual machine
environment. For an in-depth description of
those limitations the reader is referred to [6].

4 A practical example

To show the advantages of method update
facility we shall resort to a practical example
of a real world application. Consider a com-
mon data structure – a binary tree which is
used in solving many actual problems. One
such problem is representing a parse tree of
a program structure during the compilation
process. The compiler reads program input
and builds parse tree for every recognised
structure. Let us look at basic arithmetic
expressions for adding, subtracting, dividing,

and multiplying two values. It makes prefect
sense that parse tree for all such expressions
is represented equally: an operator and two
expression branches. Evaluating such tree
typically consists of checking operator type
and then performing required operation on
operands. The more operations we have the
longer it takes to check the operation type.
With method update facility in Z0 this may
be written the following way:

class ParseTree {

public ParseTree(Integer a, Integer b,

Character op)

{
if{ op == ’-’; } then {

method evaluate = {
return a - b;

};
} else if{ op == ’+’; } then {

method evaluate = {
return a + b;

};
} else if{ op == ’*’; } then {

method evaluate = {
return a * b;

};
} else {

method evaluate = {
return a / b;

};
};

}
restricted evaluate : Integer

{
return 0;

}
}

At compile time we do not have the knowl-
edge what type a particular parse tree node
will be, so we have to consider all possi-
ble types. But when the tree node is con-
structed, the constructor sets the evaluation
method properly. Note that this is done only
once, and no matter how many times the
evaluate method gets called, it will execute
only the method that properly evaluates ex-
pression. No more checking for operation
type is needed because general knowledge has
been supplemented by runtime information.
This is a very simple example but it demon-
strates how functionality that has been pre-
determined by compilation can be optimised
using runtime information. In C++ this is

feasible with function pointers but without
the necessary safety, ability of fine tuning,
and elegance.

5 A note on implementation

Methods cannot be left to classes if they have
the ability of modification at instance (ob-
ject) level. This necessitates the need for
method table to be present in every object.
Such presentation enables alteration of ob-
jects, but as one might imagine, it also ex-
hibits a space efficiency drawback. Obviously
an object requires more space when it carries
its method table with it. An optimisation of
this remains a challenge for future. A method
in Z0 requires two receivers. One is needed
to find a method and the other to execute
invocation. This is because object’s method
may be replaced with method of another ob-
ject. Method table entry contains memory
address of method, actual receiver (self), and
environment pointer. The latter is needed to
successfully describe a closure which is basi-
cally what every method is.

6 Related work

The notion of closures is found in many
highly respected and established program-
ming languages but Common Lisp Object
System [8] was our main inspiration. Strict
and pure object-oriented model is drawn
mainly from from Smalltalk, Strongtalk [1]
and other languages that advocate pure ob-
jectisation. Variant typing system, its flex-
ibility and applicability in solving practical
problems have been observed in Eiffel [9] and
Polytoil [3]. A similar type system has been
implemented by Sather [11]. An in-depth dis-
cussion with theoretical background has been
given in [4].

7 Conclusions and future work

We have designed an experimental object-
oriented programming language Z0 to
demonstrate and, before all, to research
the effects of a strict method-based model

applied to a static type system in a compiled
language architecture. Our goal was to
demonstrate advantages and practical appli-
cability to real-life programming problems.
Z0 conforms to the philosophy of pure
object-orientation which achieves a clean
programming model and enables function-
ality that is natural to pure object system.
Z0 implements a “full” runtime method
replacement mechanism which is type safe,
efficient, and is of high practical importance.
With meta architecture extension (that is
currently being implemented) Z0 will be able
to construct and manipulate entire programs
at runtime.
In the time when vast amounts of memory
are available at a reasonable price we do not
consider per-object method table to be par-
ticularly space inefficient even though object
with this representation do eat up a lot of
memory. Classes declare only methods and
when speaking in the spirit of abstracting
this is an advantage, not a drawback. It
gives us a novel opportunity to think about
objects and their behaviour rather than how
they are represented.
In a programming language design future
challenges always exist. In Z0 we are focused
on extending the static type system with
parametrised polymorphism and bounded
polymorphism. Dynamic compilation and
code generation are another issues to be
considered. Currently Z0 does not support
aspect-oriented programming [7] but with
pure object-oriented model and reflection
dynamics via MOP, implementation of
aspects is not far from reality. And then
of course there are optimisation issues on
the virtual machine level, internal object
representation, and efficiency of compilation.

References

[1] Gilad Bracha and David Griswold.
Strongtalk: Typechecking Smalltalk in
a Production Environment. In Proceed-

ings of the OOPSLA ’93 Conference on

Object-oriented Programming Systems,

Languages and Applications, pages 215–
230, 1993.

[2] Kim B. Bruce. Foundations of Object-

Oriented Languages, Types and Seman-

tics. The MIT Press, Cambridge, Mas-
sachusetts, 2002.

[3] Kim B. Bruce, Angela Schuett and
Robert van Gent. PolyTOIL: A type-
safe polymorphic object-oriented lan-
guage. Lecture Notes in Computer Sci-

ence, 952:27–51, 1995.

[4] Luca Cardelli and Martin Abadi. A

Theory of Objects. Springer-Verlag New
York, Inc., 1996.

[5] Adele Goldberg and David Robson.
Smalltalk-80 The Language and its Im-

plementation. Addison-Wesley Publish-
ing Company, 1983.

[6] Sašo Greiner, Damijan Rebernak, Janez
Brest and Viljem Žumer. Z0 - a tiny
experimental language. Sigplan notices,
40(8):19–28, 2005.

[7] Gregor Kiczales et al. Aspect-oriented
programming. Proceedings European

Conference on Object-Oriented Pro-

gramming, 1241:220–242, 1997.

[8] Jo A. Lawless and Molly M. Miller. Un-

derstanding CLOS: The Common LISP

Object System. Digital Press, 1991.

[9] Bertrand Meyer. Object-oriented soft-

ware construction. Prentice Hall, 1988.

[10] Jon Meyer and Troy Downing. Java Vir-

tual Machine. O’Reilly, 1997.

[11] Stephen M. Omohundro. The sather
programming language. Dr. Dobb’s

Journal, 18:42–48, 1993.

[12] David Ungar and Randall B. Smith. Self:
The power of simplicity. OOPSLA’87,
4(8):227–242, 1987.

