A Heuristic Algorithm for Function Optimization

Janez Brest, Saso Greiner, Borko Bogkovi¢ and Viljem Zumer
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova 17, 2000 Maribor, Slovenia
Phone: ++386-2-220-7452 Fax: ++4386-2-211-178 E-mail: janez.brest@uni-mb.si

Abstract

In this paper we present a heuristic algorithm for opti-
mization of mathematical functions. Our algorithm has
been tested on several function optimization problems.
The performance of the heuristic algorithm is compared
with the performance of genetic algorithms.

Experimental results using benchmark optimization
problems confirm that our algorithm is comparable with
algorithms from literature considering the quality of so-
lutions found.

I. INTRODUCTION

From the beginning of Genetic Algorithms (GAs) re-
search it has been known that choosing the best pa-
rameters and operators has significant impact on the
optimization process [8]. However, it was demonstrated
that every particular problem needs to have its param-
eters adjusted to its own requirements.

Finding robust variation operators or control param-
eter settings is not a trivial task since their interaction
with the performance of an evolutionary algorithm is
complex and the optimal choices are problem depen-
dent [2].

There are many papers that proposed techniques for
adapting control parameter setting associated with ge-
netic operators [6, 2]. The goal is to obtain fuzzy rule
bases that produce suitable control parameter values
for allowing the genetic operator to show an adequate
performance on the particular problem to be solved.
The empirical study of an instance of the technique has
shown that it adapts the parameter settings according
to the particularities of the search space allowing sig-
nificant performance to be achieved for problems with
different difficulties [2].

Many researchers [5] have shown that genetic algo-
rithms (GAs) perform well for global searching, but they
usually take a relatively long time to converge to the op-
timum. On the other hand, local search methods can
quickly find the local optimum of a small region of the
search space, but are typically poor global searchers.
Therefore, local search methods have been incorporated
into GAs in order to improve their performance through
what could be termed as learning. Such hybrid GAs of-
ten known as memetic algorithms have been used suc-

cessfully to solve a wide variety of realistic problems
[9].

Davis [1] argues that genetic algorithms when hy-
bridized with the most successful local search meth-
ods or memes for a particular problem give the best of
both worlds. If implemented correctly, these algorithms
should do better than the traditional genetic algorithms
or local search alone. Nevertheless, this also means that
unless one correctly chooses the right meme, a memetic
algorithm may not perform at its optimum, or it may
even be worse than using the genetic algorithm or the
local improvement procedure itself [9].

Winter et al. [8] introduced a new and more flexible
internal structure design, where the parameters, the op-
erators and the structure can adapt themselves at each
optimization step. This new structure is named a Flex-
ible Evolution Agent (FEA).

The performance results for different Evolution
Strategies (ESs) and optimization with flock (OF) are
compared by Crepinsek et all. in paper [4].

In this paper we propose a heuristic algorithm based
on local search optimization. Results obtained by our
algorithm are comparable with results from literature.

In [8] authors present some sampling methods that
are used in a process to get new solution x,e,: only
over any of the variables or over the all variables of
Torq- We introduce a method to calculate x,,¢,, Which is
based on random over all variables x,;4.

The rest of paper is organized as follows. In the
next section the widely used local search heuristic is
presented. In Section III our heuristic algorithm is de-
scribed. Numerical benchmark functions that we used
for evaluating our algorithm are analyzed in Section IV.
In Section V results for all algorithms on benchmark
problems are presented. Finally, Section VI concludes
the paper.

II. LOCAL SEARCH

Local optimization is a well known and widely used
general purpose heuristic. A generic procedure for local
search optimization is shown in Figure 1 [7, 3]. Step 1
is the initialization step which produces initial solution
S, step 2 is the optimization step which attempts to
improve the existing solution through the local search.

find initial solution S
while not done do

transform S into S’

if S’ is better then S then S = S’
output S

WNNN=
N =

Figure 1: Generic local search procedure

Finding initial solution may be random or can be ob-
tained by some algorithm. The result in step 2 is usually
something like ”no improvement for some (long) time”.
Transformation in 2.1 should be cheap in comparison to
finding initial solution in step 1.

III. HEURISTIC ALGORITHM

When our algorithm was constructed, we were inspired
by local search procedure, which is described in previous
section.

Initial solution in our algorithm is obtained randomly
using rand () function in C/C++ programing language.

Step 2.1 from figure 1 is calculation of a new solution
vector from temporary best solution vector. Next lines
of original C/C++ code present the calculation of new
X vector:

// random real number [0, 1)
double mRandom() {

return rand()/(RAND_MAX + 1.0);
}

void Border (double X[MAX_N], int n, double border)
{
for (int i=0; i<n; i++) {
if (X[i] < -border) X[il
if (X[i] > border) XI[i]
}
}

= -border;
border;

// calculate new vector X from vector Xbest
void newX(int n, double border, double X[MAX_N],
double Xbest[MAX_N], int k)

{
if (0 == k) { // Step 1
for (int i=0; i < n; i++) {
X[i] = -border + (2*border)*mRandom();
}
}
else { // Step 2.1
for (int i=0; i < n; i++) {
const double mulConst = 100.0;
double p = pow(10, mulConst*mRandom()) ;
X[i] = Xbest[i] +
(-border + (2*border)*mRandom()) / p;
}
Border (X, n, border);

}

// border check

Function newX () includes both initialization and op-
timization steps. When new X vector is calculated, all
its components are changed. Function Border () checks
interval bounds of the vector’s definition space. Note,
that definition interval is symmetric. If any of the vec-
tor’s components is out of bounds, we assign a new
value to that component where the value is equal to the
bound value. For example, by fg.; function the defi-
nition space is —600.0 < x; < 600.0 and we use value
—600.0 if the value of x; component is less than —600.0
and we use value 600.0 if the value of x; component is
greater than 600.0.

Step 2.2 from figure 1 is also straightforward, new
evaluated function value is used in comparison with the
temporary best function value. If new value is better
than the temporary best function value, the new one is
stored and the new X vector is also stored.

The next code fragment illustrates an example of
function calculation for fs., function:

// Spherical
void F1(int nEvaluation, int n, double border) {
double X[MAX_N], Xbest[MAX_N], f, fbest=DBL_MAX;

for (int k=0; k < nEvaluation; k++) {
newX(n, border, X, Xbest, k);
f =0.0;
for (int i=0; i < n; i++) { // function
f += X[i]*X[il;
}
better(f, fbest, X, Xbest, n); // Step 2.2
}
printResult (Xbest, fbest, n);
}

F1 function represents fs.; function. Function F1 is
called with values 600 000, 25, 5.12 for number of evalua-
tions, size problem (dimensionality), interval definition,
respectively.

Our algorithm stores only one vector as the tempo-
rary best solution, while GA needs more vectors to store
a whole population.

At a higher level of abstraction, maybe one can look
at our heuristic algorithm as GA with the population
size of 1.

IV. NUMERICAL BENCHMARKS
FUNCTIONS

For the experiment, we have considered six frequently
used test functions [2]:

. 2
3. fsen(@) = Ty (Sioi o)
—65.536 < z; < 65.536
fsen(z*) =0

4. fRas(T) =a-n+ Z?:l(x? —a- COS(LU . .’I,‘z))
a=10,w =27
—5.12 < x; <5.12
fRas(z*) = 0 (see Figure 3)

5. fari(T) =520 (2F) — T2, COS(%) +1
d = 4000
—600.0 < z; <600.0

feri(z®) =0

6. efio(T) = fio(x1,22) + ... + fro(@n—1,2n) +
+ fio(@n, 1)
fro(z,y) = (22 +y*)0% - [sin® (50 - (2 +y*)1) +1]
2,y € (-100, 100]
efio(z*) =0

PN
AR
S R AR
SRS
5 A

%\

Figure 3: 2D graph of fr.s(x) function

fspn 1s a continuous, strictly convex, and unimodal
function.

fRos is a continuous and unimodal function, with the
optimum located in a steep parabolic valley with a flat
bottom. This feature will probably cause slow progress
in many algorithms since they must continually change
their search direction to reach the optimum. This func-
tion has been considered by some authors to be a real
challenge for any continuous function optimization pro-
gram. A great part of its difficulty lies in the fact that
there are nonlinear interactions between the variables,
i.e., it is nonseparable.

fsen is a continuous and unimodal function. Its dif-
ficulty concerns the fact that searching along the co-
ordinate axes only gives a poor rate of convergence,
since the gradient of fg.;, is not oriented along the axes.
It presents similar difficulties to fr,s, but its valley is
much narrower.

fRras 18 a scalable, continuous, separable, and multi-
modal function, which is produced from fsp, by modu-
lating it with « - cos(w - ;).

fari is a continuous and multimodal function. This
function is difficult to optimize because it is nonsepara-
ble and the search algorithm has to climb a hill to reach
the next valley.

fi0 is a function that has nonlinear interactions be-
tween two variables. Its expanded version efq is built
in such a way that it induces nonlinear interaction
across multiple variables. It is nonseparable as well.

V. RESULTS

Algorithm T-FBs is the best of six algorithms by Her-
rera et al. [2]. The T-FBs algorithm was executed 30
times with 10000 generations, and the population size
was 60 chromosomes. Therefore, we can calculate the
number of function evaluations: 600000 (10000 - 60).

We want to make a performance comparison of two
different algorithms and we choose the equal number
of evaluations. Our algorithm was executed 30 times,
and the stop condition was 600000 evaluations for each
function. The dimension of the search space is 25.

In our experiment the same six mathematical func-
tion were used as in [2]. The obtained results are pre-
sented in Table 1. For each function the best value
(Min.) and the average value (Avg.) are presented for
the T-FBs algorithm and our algorithm, respectively.

For sphere model function (fs,,) the T-FBs algorithm
gets better values, but it can be noticed that our algo-
rithm gets good solution, too.

By Generalized Rosenbrock’s function (fges) our al-
gorithm outperforms T-FBs algorithm.

By Expansion of f1 function (ef10) T-FBs algorithm
outperforms our algorithm. Neverless, our algorithm
gives good results.

Algorithms perform the same in two cases, Schwefel’s
Problem 1.2 (fgcn) and Griewangk’s function (fgr:).

Table 1: Results of experiments and their comparison with results from literature.

fsph fRos fSch
Algorithm Min. Avg. Min. Avg. Min. Avg.
T-FBs 2.76e-201 | 2.69e-200 || 8.31e-2 | 1.02e+1 || 5.88e-11 | 9.25¢-9
Our 1.96e-37 | 8.71e-36 5.57e-26 | 1.65e-24 || 1.82e-10 | 1.26e-8

fRas fGri eflO
Algorithm Min. Avg. Min. Avg. Min. Avg.
T-FBs 0 3.32¢-2 0 0.00e0 1.58e-48 | 3.55e-25
Our 0 1.11e-17 0 5.33e-2 5.81e-9 | 9.85.e-9

T-FBs algorithm gets better average solution value by
fsen function.

By Generalized Rastrigin’s function (fres) our algo-
rithm gets better average solution value.

The advantages of our algorithm are:

e it requires a small amount of memory during exe-
cution. For example, GAs need much more main
memory to store population.

e has simple implementation.

e no need for parameters and/or operators adjust-
ments, that can be found in GAs, etc.,

e and finally, but not less important, it is fast.

A feature of this algorithm is a natural mapping
onto coarsely grained parallel architectures. We plan to
utilize networked workstations and PCs to solve func-
tion optimization in parallel on more difficult problem
classes. Future work includes research and study of
cases, when search space becomes more complex.

VI. CONCLUSION

In the paper a heuristic algorithm for numerical func-
tion optimization is presented. The algorithm is based
on a generic local search optimization procedure.

Performance of our algorithm is compared to the algo-
rithm taken from the literature and the obtained results
shows that our heuristic algorithm is comparable with
other well known algorithms.

References

[1] Lawrence Davis, editor. Handbook of Genetic Algo-
rithms, New York, 1991. Van Nostrand Reinhold.

[2] F. Herrera and M. Lozano. Adaptive Genetic Op-
erators Based on Coevolution with Fuzzy Behav-
iors. IEEE Transaction on Evolutionary Computa-

tion, 5(No. 2):149-165, April, 2001.

[3] Janez Brest and Janez Zerovnik. An approxima-
tion algorithm for the asymmetric traveling sales-
man problem. Ric. oper., 28:59—67, 1999.

[4] Matej Crepinsek, Marjan Mernik, Viljem Zumer.
Using flocks for solving numerical optimization
problem. In Diana Simi¢ Vlado Glavini¢, Vesna
Hljuz Dobrié, editor, Proceedings of the 24th Inter-
national Conference on Information Technology In-
terfaces, pages 395-400, Cavtat, Croatia, 2002.

[5] Zbigniew Michalewicz. Genetic Algorithms + Data
Structures = Fvolution Programs. Springer-Verlag,
1996. Contains introductory chapter on LCS.

[6] Mitchell A. Potter and Kenneth De Jong. A cooper-
ative coevolutionary approach to function optimiza-
tion. In Yuval Davidor, Hans-Paul Schwefel, and
Reinhard Ménner, editors, Parallel Problem Solv-
ing from Nature — PPSN III, pages 249-257, Berlin,
1994. Springer. Lecture Notes in Computer Science
866.

[7] R. Sosi¢ and G. D. Wilby. Using the Quality-Time
Tradeoff in Local Optimization. In Proceedings of
IEEE Second ANZIIS Conference, Brisbane, pages
253-257, Dec, 1994.

[8] Gabriel Winter, Blas Galvn, Silvia Alonso, and
Begona Gonzélez. Evolving from genetic algorithms
to flexible evolution agents. In Erick Canti-Paz, ed-
itor, Late Breaking Papers at the Genetic and Evo-
lutionary Computation Conference (GECCO-2002),
pages 466—473, New York, NY, July 2002. AAAIL

9] K. W. Wong Z. Ning, Y. S. Ong and M. H.
Lim. Choice of memes in memetic algorithm.
In Yuval Davidor, Hans-Paul Schwefel, and
Reinhard Ménner, editors, 2nd International
Conference on Computational Intelligence,
Robotics and Autonomous Systems (CIRAS
2008), Special Session on Optimization us-
ing Genetic, Fvolutionary, Social and Behav-
ioral Algorithms, Singapore, 2003. http://ntu-
cg.ntu.edu.sg/ysong/conference/ysongCIRAS03.pdf.

