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1 Introduction

The traveling-salesman problem (TSP) is one of the most studied problems in combinatorial
optimization [16, 14]. The TSP is simply stated, has practical applications, and is a repre-
sentative of a large class of important scientific and engineering problems. The TSP can be
viewed as a graph—theory problem if the cities are identified with the vertices of a graph, and
the links between the cities are associated with arcs. A weight corresponding to the inter—city
distance is assigned to each arc. The TSP is equivalent to finding a minimal weighted Hamil-
tonian circuit in the complete graph K,,. However, in its usual physical interpretation, where
the vertices of a graph are cities and edges represent roads interconnecting them, the graph
is most likely not complete. To remedy this situation, graph is usually completed by adding
arcs with the cost of the shortest path in the original graph.

TSP is an example of a NP-hard problem [10]. It is therefore reasonable to design heuristic
algorithms which find near—optimal solutions. According to [1], several hundreds of papers
were published on TSP and probably every approach for attacking NP-hard optimization
problems has also been tested or has even been formulated for TSP.

An instance of the TSP is given by distance matrix D = (d;;) of dimension n X n; where
d;; represents the weight of the arc from city 4 to city j in N = {1,...,n}. If d;; = dj; for
every pair 4 and j in N then the TSP is symmetric, otherwise it is asymmetric (ATSP). Our
heuristics can be used for general TSP, but we restict our focus on ATSP. There are currently
three classes of modern heuristics for the asymmetric traveling salesman problem proposed by
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J. Cirasella et al. [7] classical tour construction heuristics such a Nearest Neighbor and Greedy
algorithm, local search algorithms based on re-arranging segments of the tour, as exemplified
by the Kanellakis-Papadimitriou algorithm, and algorithms based on patching together cycles
in a minimum cycle cover, the best of which are variants on an algorithm proposed by Zhang.
Our heuristics is based on the well-known arbitrary insertion procedure [17]. This algorithm
was not payed too much attention, maybe because of the known worst case performance
[17, 9]. In the worst case, the arbitrary insertion on ATSP can give solutions with costs as
much as n times the optimal [9], while for the symmetric case the solution is always better
than two times the optimum [17]. However, because of our relatively good experience with
insertion—and—optimization approach on PTSP [18], a probabilistic generalization of TSP [11],
we started our experiment, in which we have repeatedly run the arbitrary insertion based
procedure followed by a local optimization phase. Interestingly, we got surprisingly good
results within short computation times. While the arbitrary insertion procedure is well known
although not much used, the local search based on the arbitrary insertion neighborhoods seems
to be even less popular as we are not aware of any work using such neighborhood structure.

Recently, very good results were obtained with an exact algorithm for ATSP on a class of
random instances [15]. Studies of the asymmetric traveling salesman polytope give hope to
solve large instances of ATSP in general (see, for example [6] or [8]). The exact algorithms tend
to be very time consuming, because their time complexity is superpolynomial. An alternative,
perhaps more practical approach, is to design approximation algorithms which give solutions
of reasonable quality in a short time. There is a simple O(logn) approximation algorithm for
ATSP with triangle inequality [9]. Interestingly, the 1 -logy, n approximation of [9] has been
slightly improved to 0.999 - log, n [2] and to 0.842 - log, n [12] only after 20 years indicating
hardness of the problem. The existence of a constant factor algorithm is open [13]. On the other
hand, the well-known 3/2 approximation algorithm of Christofides was recently generalized
to obtain approximation algorithms for TSP with S—triangle inequalities [3].

In this note we first give the results of tests of our algorithm on all ATSP instances of
the TSPLIB library [16], which were available at the time of the experiment. The results we
obtain are consistent with our experience with insertion—and—optimization approach on PTSP
[18], a probabilistic generalization of TSP [11]. While the quality of results is comparable with
our earlier tests [5], the running times are now much shorter. Bearing in mind high inherent
paralelism of the heuristics, we claim that the approach we use may indeed be useful. Finally,
we give upper bounds for the approximation ratio of a variant of our heuristics which depends
on the asymmetry” of the instance. Recently, aproximability of TSP with triangle inequality
was extended to aproximability of TSP with S-triagle inequalitiy [3, 4]. It may be possible to
use the ideas briefly explained here to extend the approximabily results from the symmetric
TSP to asymmetric case where the asymmetry factor would play a role similar to the that of

B.

2 The Heuristic

The main idea of our heuristic is based on the arbitrary insertion algorithm [17], a relaxation
of the cheapest insertion algorithm. The solutions are further improved by a local optimization
phase.
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Algorithm RATI (Randomized Arbitrary Insertion):

Start with a tour consisting of a given vertex and self-loop.
Randomly choose a vertex not on the tour.
Insert this vertex between neighboring vertices on the tour in the cheapest possible way.

If the tour is still incomplete, go to step 2.

Keep this tour solution, say S.

Repeat n’-times steps 6 through 10.

Randomly choose i and j (i,j € N={1,...,n} ,1<i<j<n).

From the circuit with all vertices remove a path beginning with vertex i through vertex
j, and connect vertex 1 — 1 with vertex j + 1.

Randomly choose a vertex from the removed path.

Insert this vertex between two neighboring vertices on the tour in the cheapest possible

way. If the tour is still incomplete go to step 8.
10. Compare current solution with the solution S. Keep the better one.

W=

NS O

© X

First four steps generate an initial circuit. In the main loop — steps 6 through 10 an
optimization is performed. Some vertices are removed from the circuit and later they are
randomly reinserted into the circuit once more in the cheapest possible way.

There is an interesting question on how many times the optimization should be performed
(step 5). We repeated it n?-times. We have no theoretical arguments for this choice; it turned
out to give good results in reasonably short time. In each iteration, the number of deleted and
reinserted vertices is at most n and for each insertion of a vertex at most n different insertion
positions are compared. The worst case time complexity of our algorithm is thus O(n*).

3 Computational Results

Since we needed optimal solution value for evaluation of the results, we tested the algorithm
on all ATSP instances from TSPLIB library [16]. The results obtained in our experiments are
shown in Table 1. The second and the third column indicate the name of ATSP instance and
the number of cities, respectively. The optimal tours are known for all of problem instances and
their costs are shown in the fourth column. For each of the problem instances, 100 independent
runs were performed.

Recall that in each run n? tours are generated. In the next column the average time (in
seconds) of 100 independent runs is shown (SunFire v40z with FC3 Linux). In the last two
columns the shortest and the average solution length for the 100 runs are shown, respectively.
For all but four instances (problems: ft70, kroal2}p, rbg323, rbg358) the optimal solutions
have been found. If we look at the averages of the 100 independent runs we can see that our
heuristic has solved the problems within 3% from optimum on average. If we look at the best
solutions, we can see that our heuristic has solved majority of problems within 0.5% from
optimum. there was only one exception: the best solution obtained for the problem instance
rbg328 was 0.67% from optimum.

In the last three columns, the number of runs in which our algorithm found the solution
equal to the optimal solution, are presented for n2,2n2, 10n? repetitions of step 5 (algorithm
RAI), respectively.
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Table 1: The results for the asymmetric TSP instances.

‘ Graph ‘ n ‘ Opt. ‘ t[s] ‘ min. % ‘ avg. % H (n?) H (2n?) ‘ (10n?) ‘
1 brl7 17 39 0.001 39 0.00 39.00 0.00 || 100 100 100
2 ftv33 34 1286 | 0.004 | 1286 0.00 | 1288.16 0.17 96 99 100
3 ftv35 36 1473 | 0.005 | 1473 0.00 | 1481.06 0.55 26 29 30
4 ftv38 39 1530 | 0.008 | 1530 0.00 | 1541.27 0.74 18 15 17
5 p43 43 5620 | 0.009 | 5620 0.00 | 5620.71 0.01 21 32 49
6 ftvd4 45 1613 | 0.011 | 1613 0.00 | 1637.51 1.52 22 24 37
7 ftv47 48 1776 | 0.014 | 1776 0.00 | 1780.18 0.30 17 34 90
8 ry48p 48 | 14422 | 0.014 | 14422 0.00 | 14517.20 0.66 6 5 16
9 1t53 53 6905 | 0.020 | 6905 0.00 | 6941.17 0.52 44 50 79
10 ftvbh 56 1608 | 0.025 | 1608 0.00 | 1618.92 0.68 30 46 91
11 ftvo4 65 1839 | 0.044 | 1839 0.00 | 1852.51 0.75 16 23 50
12 ft70 70 | 38673 | 0.058 | 38850 0.47 | 39170.30 1.30 0 0 0
13 ftv70 71 1950 | 0.061 | 1950 0.00 | 1965.79 0.81 7 32 81
14 ftv90 91 1579 | 0.159 | 1579 0.00 | 1583.31 0.27 8 15 22
15 | krol24p | 100 | 36230 | 0.238 | 36241 0.03 | 37237.20 2.78 0 0 0
16 | ftvl00 | 101 | 1788 | 0.237 | 1788 0.00 | 1791.95 0.22 15 9 23
17 | ftv110 | 111 | 1958 | 0.343 | 1958 0.00 | 1963.59 0.29 9 12 21
18 | ftv120 | 121 | 2166 | 0.481 | 2166 0.00 | 2179.07 0.60 6 10 16
19 | ftv130 | 131 | 2307 | 0.656 | 2307 0.00 | 2321.84 0.64 5 6 10
20 | ftv140 141 | 2420 | 0.885 | 2420 0.00 | 2434.40 0.60 6 5 11
21 | ftvl50 | 151 | 2611 | 1.161 | 2611 0.00 | 2645.88 1.34 10 13 19
22 | ftvle0 | 161 | 2683 | 1.521 | 2683 0.00 | 2717.77 1.30 18 19 38
23 | ftv170 | 171 | 2755 | 1.957 | 2755 0.00 | 2801.16 1.68 4 2 8
24 | rbg3d23 | 323 | 1326 | 29.28 | 1335 0.68 | 1352.01 1.96 0 0 0
25 | rbg358 | 358 | 1163 | 45.29 | 1164 0.09 | 1174.84 0.93 0 0 0
26 | rbgd03 | 403 | 2465 | 76.36 | 2465 0.00 | 2465.74 0.03 80 87 92
27 | rbgd43 | 443 | 2720 | 115.9 | 2720 0.00 | 2720.64 0.02 70 76 88

Remark. In [5] we have also compared our heuristic with Farthest Insertion (far), and
Farthest Insertion followed by OR-opt [14] (p. 220). OR-opt local optimization proceeds as
follows. For each connected string of s cities (s equals 3 first, then 2, then 1), we test to see
if the string can be relocated between two other cities at reduced cost. If it can, we make the
appropriate changes. After considering all strings of three cities, all strings of two cities and
then all strings of one city are considered. When no further exchanges improve the solution,
the algorithm terminates. Farthest insertion was repeated n times, each time another vertex
was used as initial tour. The running times for farthest insertion are much shorter, therefore
we only give the shortest solution length. The tours constructed by farthest insertion were
then improved by OR-opt. The solutions after local optimization are given in column far+OR.
The execution times were measured and then the algorithm RAI was let running for the same
amount of time (column ¢[s]). The solutions obtained by RAI are given in column RAI. Note
that the solutions obtained by RAI algorithm were usually better with only three exceptions,
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the instances ry48p, rbg323, and rbg358.

We conclude that the fast and simple heuristics RAI performs remarkably well and is
competitive both in terms of solution quality and execution times with the best heuristics
proposed in the literature.

4 Approximation bounds

We say, for every > 1/2, that an input instance of the general TSP satisfies the S—triangle
inequality if
dij < B(dix, + dj)

for all vertices i, j, k. Note that this definition is valid for general TSP including ATSP. By Ag-
TSP we denote the TSP whose input instances satisfy the f—triangle inequality. Recently, the
well-known 3/2 approximation algorithm of Christofides for symmetric TSP was generalized
to obtain approximation algorithms for symmetric TSP with S—triangle inequalities. For
1/2 < <1, thereisa (1 + w?éﬁ) approximation algorithm [3]. For 1 < 3, there is a %ﬁz
approximation algorithm [4]. For more details and further references on related work, see [4].

Let us define the asymmetry factor

_ dij dji
a= max { —,— o.
1,J€V(G) djz' dz'j
If weights (distances) equal to 0 appear in the TSP instance, then we take 0/0 = 1 and
d;j/0 = co. Hence ATSP with asymmetry factor co are possible. a =1 ATSP is just a TSP.

Theorem 1. Let A be an approzimation algorithm for Ag—TSP with approzimation ratio
r. Then there is an approzimation algorithm for Ag—ATSP with approzimation ratio HTO‘T
where o is the asymmetry factor.

The proof will be given in the full paper.

Let us consider the following variant of the algorithm RAI in which we replace the initial
tour construction (Steps 1-5) and leave the iterative improvement part (Steps 6-10) unchanged.

Algorithm ARAT (Approximation Algorithm based on Randomized Arbitrary Insertion):

Generate a symmetric instance by taking d;; = min{d;;, d;;}.
Run an approximation algorithm for Ag—TSP.

Choose the cheapest of the two oriented tours.

Keep this tour solution, say S.

Repeat n?-times steps 6 through 10.

Steps 6-10 are as in algorithm RAI

S OUk oo~

Theorem 2. ARAI is an approximation algorithm on instances with finite asymmetry
factor.

The idea of the proof is as follows: Given an instance with finite asymmetry factor, compute
a suitable 8 and use the approximation algorithm for Ag-TSP with approximation ratio, say
r. Then by Theorem 1, already initial tour produced by ARAI is a H'Tar approximation.
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