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Introduction

Differential Evolution (DE) is simple yet powerful EA
algorithm for optimizing continuous functions, e.g. static
optimization environment.

CEC 2009 special session on evolutionary computation in
dynamic and uncertain environments.

Main goal: self-adaptive DE algorithm + multi-populations
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Introduction

In this presentation:

hybridization of our self-adaptive differential evolution
algorithm jDEwith multi-populations, aging, overlapping
search

performance comparison on the set of benchmark problems
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The Differential Evolution Algorithm

The Differential Evolution Algorithm

Price & Storn, 1995 (JGO:1997)

NP .. population size (D-dimensional vectors)
F .. mutation scale factor
CR .. crossover parameter

”rand/1” strategy:

~vi
(G) = ~x

(G)
r1 + F · (~xr2

(G) − ~xr3
(G)), r1 6= r2 6= r3 6= i

ui ,j
(G) =

{
vi ,j

(G) if rand(0, 1) ≤ CR or j = jrand ,

xi ,j
(G) otherwise,

where i = 1, 2, ...,NP and j = 1, 2, ...,D.

~x , ~u better survives
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The Self-adaptive DE Algorithm

The Self-adaptive DE Algorithm: jDE algorithm

F
(G+1)
i =

{
Fl + rand1 · Fu if rand2 < τ1,

F
(G)
i otherwise,

CR
(G+1)
i =

{
rand3 if rand4 < τ2,

CR
(G)
i otherwise.

τ1 = 0.1, τ2 = 0.1,Fl = 0.1,Fu = 0.9 (fixed values)
F ∈ [0.1, 1.0],CR ∈ [0, 1]

[4] J. Brest et al. Self-Adapting Control Parameters in Differential Evolution: A

Comparative Study on Numerical Benchmark Problems. IEEE TEVC,

10(6):646–657, 2006.
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Hybridized algorithm for solving Dynamic Optimization
Problems (DOPs)

multi-populations (random indexes r1, r2, and r3 indicate
vectors (individuals) that belong to same subpopulation as the
trial vector ~xi )
self-adaptive control mechanism, F belongs to interval
[0.36, 1] (Fl = 0.36 – suggested by D. Zaharie [22])
aging at individual level (an individual that stagnates in
local optimum should be reinitialized)
overlapping search between two subpopulations (distance
of the best individuals of the subpopulations)
reinitialization (when individual is close to local best)
archive (currently best individual is added to archive after
each change is detected)

J. Brest et al. FEECS, Univ. of Maribor

Dynamic Optimization using Self-Adaptive Differential Evolution 9 / 29



logo-UM

Introduction Background Algorithm for DOPs Experimental Results Conclusions

Our algorithm – Multi-populations

random indexes r1, r2, and r3 indicate vectors (individuals)
that belong to same subpopulation as the trial vector ~xi )

more populations without any information sharing (except
overlapping search between two best individuals of two
subpopulations)

subpopulations search different regions – diversity is important
feature in DOPs

J. Brest et al. FEECS, Univ. of Maribor
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F belongs to interval [0.36, 1]

D. Zaharie [22] ”critical values for the control parameters of
DE”

2F 2 − 2/NP + CR/NP = 0 ... ”can be considers to be
critical” (this formula has an error in the paper )

assume CR = 0 and NP = 10 then critical value for F is
0.308 (0.424 when NP = 5)

we set Fl = 0.36 in all experiments

J. Brest et al. FEECS, Univ. of Maribor
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Our algorithm – aging at individual level

an individual that stagnates in local optimum should be
reinitialized

each individual has its own age-variable (incremented once per
generation)

three rules for aging (see Alg. 1):

global best is not reinitialized
when local best needs to be reinitialized, the whole
subpopulation with some probability is reinitialized
another individual is reinitialized with some probability

J. Brest et al. FEECS, Univ. of Maribor
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Our algorithm – Individual’s improvement and aging

when an improvement of individual occurs the age is set to
some small value – the new promising individual should stay in
population for more generations

the distance measure and fitness are used to make decision
when individual’s improvement is small or big (see Alg. 4)

J. Brest et al. FEECS, Univ. of Maribor
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Our algorithm – Archive

algorithm starts with empty archive

currently best individual is added to the archive, after each
change is detected

an individual is selected from archive only for the first
subpopulation

J. Brest et al. FEECS, Univ. of Maribor
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Parameter Settings

F self-adaptive,

CR self-adaptive,

NP = 50,

number of sub-populations: 5 (the size of each
sub-populations was 10).
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Results

Table: CEC’09 Dynamic Optimization benchmark functions

F1 Rotation peak function
F2 Composition of Sphere’s function
F3 Composition of Rastrigin’s function
F4 Composition of Griewank’s function
F5 Composition of Ackley’s function
F6 Hybrid Composition function

J. Brest et al. FEECS, Univ. of Maribor
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Results

Table: Error Values Achieved for Problems F1

Dimension(n) Peaks(m) Errors T1 T2 T3 T4 T5 T6

10 10 Avg best 0 0 0 0 0 0

Avg worst 0.910466 32.1705 31.7827 0.919964 18.392 32.7662

Avg mean 0.028813 3.5874 2.99962 0.015333 2.17757 1.1457

STD 0.442537 7.83849 7.12954 0.288388 4.38812 5.72962

50 Avg best 0 0 0 0 0 0

Avg worst 3.92056 30.1958 27.6823 1.21212 9.08941 33.1204

Avg mean 0.172355 4.08618 4.29209 0.0877388 0.948359 1.76542

STD 0.763932 6.4546 6.74538 0.24613 1.76552 5.82652

T7(5-15) 10 Avg best — — 0 — — —

Avg worst — — 34.8377 — — —

Avg mean — — 3.5017 — — —

STD — — 7.89858 — — —

50 Avg best — — 0 — — —

Avg worst — — 29.768 — — —

Avg mean — — 4.36913 — — —

STD — — 6.9321 — — —

J.Brest et al. FEECS, Univ. of Maribor
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Results

Table: Error Values Achieved for Problems F2

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best 0 0 0 0 0 0

Avg worst 15.4426 435.019 468.43 10.6608 459.147 49.5327

Avg mean 0.963039 43.0004 50.1906 0.793141 67.0523 3.36653

STD 3.08329 114.944 124.015 2.53425 130.146 12.9738

T7(5-15) Avg best — — 0 — — —

Avg worst — — 226.332 — — —

Avg mean — — 13.2524 — — —

STD — — 45.7797 — — —
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Results

Table: Error Values Achieved for Problems F3

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best 0 9.70434e-08 3.13019e-10 0 5.35102e-10 8.17124e-14

Avg worst 238.417 938.858 944.695 922.236 874.852 1226.38

Avg mean 11.3927 558.497 572.105 65.7409 475.768 243.27

STD 58.1106 384.621 386.09 208.925 379.89 384.98

T7(5-15) Avg best — — 0 — — —

Avg worst — — 853.061 — — —

Avg mean — — 153.673 — — —

STD — — 286.379 — — —
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Results

Table: Error Values Achieved for Problems F4

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best 0 0 0 0 0 0

Avg worst 19.623 475.7 544.92 16.6057 510.193 28.4483

Avg mean 1.48568 49.5044 51.9448 1.50584 69.4395 2.35478

STD 4.47652 135.248 141.78 4.10062 144.041 5.78252

T7(5-15) Avg best — — 0 — — —

Avg worst — — 163.727 — — —

Avg mean — — 11.7425 — — —

STD — — 39.4469 — — —
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Results

Table: Error Values Achieved for Problems F5

Dim.(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best 4.10338e-14 4.16556e-14 4.15668e-14 4.08562e-14 4.24549e-14 4.08562e-14

Avg worst 4.89413 9.6899 10.1371 4.75098 9.28981 4.78684

Avg mean 0.159877 0.333918 0.357925 0.108105 0.409275 0.229676

STD 1.02554 1.64364 1.83299 0.826746 1.90991 0.935494

T7(5-15) Avg best — — 4.12115e-14 — — —

Avg worst — — 11.8188 — — —

Avg mean — — 0.434294 — — —

STD — — 2.22792 — — —
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Results

Table: Error Values Achieved for Problems F6

Dimension(n) Errors T1 T2 T3 T4 T5 T6

10 Avg best 0 0 0 0 0 0

Avg worst 32.7204 51.8665 84.519 38.7914 191.895 45.0354

Avg mean 6.22948 10.3083 10.954 6.78734 14.9455 7.8028

STD 10.4373 13.2307 23.2974 10.1702 45.208 10.9555

T7(5-15) Avg best — — 0 — — —

Avg worst — — 58.9448 — — —

Avg mean — — 10.736 — — —

STD — — 14.7267 — — —

J.Brest et al. FEECS, Univ. of Maribor
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Results

Table: Algorithm Overall Performance

F1(10) F1(50) F2 F3 F4 F5 F6

T1 0.014768 0.0146876 0.0211049 0.0157107 0.0206615 0.021766 0.0170472

T2 0.0136901 0.0135926 0.0135271 0.00298238 0.013148 0.0208661 0.0139488

T3 0.0138256 0.0135304 0.0130808 0.00281439 0.013545 0.0209286 0.0141912

T4 0.0147164 0.0146941 0.0210035 0.0127621 0.0199268 0.0221962 0.0153046

T5 0.0139415 0.0143644 0.0123976 0.0044056 0.012376 0.0213094 0.0155184

T6 0.0141265 0.013874 0.017776 0.00734523 0.0179501 0.0207361 0.0139512

T7 0.00911221 0.00898569 0.0101876 0.00549392 0.0101813 0.0137894 0.00942562

Mark 0.0941803 0.0937288 0.109078 0.0515143 0.107789 0.141592 0.099387

Performance (sumed the mark obtained for each case and multiplied by 100): 69.7269
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Convergence graphs F1–F4
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Convergence graphs F5, and F6

J. Brest et al. FEECS, Univ. of Maribor

Dynamic Optimization using Self-Adaptive Differential Evolution 26 / 29



logo-UM

Introduction Background Algorithm for DOPs Experimental Results Conclusions

Discussion

our algorithm performs very well on small step (T1) and
chaotic (T4) change types for F1 – F4

F5: it obtained good results over all changed types

F6: it obtained very well results over all changed types

F3 is the most difficult one among all test problems

J. Brest et al. FEECS, Univ. of Maribor
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Conclusions

jDE algorithm with multi-populations and aging mechanism was
evaluated on CEC’09 test problems – special session on dynamic
optimization problems.

Overall performance: 69.7

Future plans:

to apply additional co-operation among sub-populations

to use sub-populations of different sizes

to improve the usage of the archive (here, a simple variant of
the archive is used)

J. Brest et al. FEECS, Univ. of Maribor
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Thank You

Questions?

J. Brest et al. FEECS, Univ. of Maribor
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