Introd		

Backgroun 00 Algorithm for DOPs

Experimental Results

(日) (同) (三) (三)

Conclusions

Dynamic Optimization using Self-Adaptive Differential Evolution

IEEE Congress on Evolutionary Computation (IEEE CEC 2009), Trondheim, Norway, May 18-21, 2009

J. Brest, A. Zamuda, B. Bošković, M. S. Maučec, V. Žumer

Faculty of Electrical Engineering and Computer Science University of Maribor

May 19, 2009

J. Brest et al.

Background 00 0	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions

1 Introduction

2 Background

- The Differential Evolution Algorithm
- The Self-adaptive DE Algorithm
- 3 Algorithm for DOPs
- 4 Experimental Results

5 Conclusions

J. Brest et al.

FEECS, Univ. of Maribor

Introduction	Background 00 0	Algorithm for DOPs 0000000	Experimental Results 0000000000	Conclusions
Introductio	on			

- Differential Evolution (DE) is simple yet powerful EA algorithm for optimizing continuous functions, e.g. static optimization environment.
- CEC 2009 special session on evolutionary computation in dynamic and uncertain environments.
- Main goal: self-adaptive DE algorithm + multi-populations

イロト 不得 トイヨト イヨト

Introduction	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions
Introduc	tion			

In this presentation:

- hybridization of our self-adaptive differential evolution algorithm *jDE* with multi-populations, aging, overlapping search
- performance comparison on the set of benchmark problems

イロト イヨト イヨト イヨト

	Background ●0 ○	Algorithm for DOPs 0000000	Experimental Results 0000000000	Conclusions
The Differential Evo	olution Algorithm			

Introduction

2 Background

- The Differential Evolution Algorithm
- The Self-adaptive DE Algorithm
- 3 Algorithm for DOPs
- 4 Experimental Results

5 Conclusions

J. Brest et al.

FEECS, Univ. of Maribor

	Background ○● ○	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions
The Differential Evolut	tion Algorithm			
The Differ	ential Evolu	tion Algorithm		

- NP .. population size (D-dimensional vectors)
- F .. mutation scale factor
- *CR* .. crossover parameter

イロト イヨト イヨト イヨト

	Background ○● ○	Algorithm for DOPs	Experimental Results 0000000000	Conclusions
The Differential Ev	olution Algorithm			
The Diffe	erential Evo	lution Algorithr	n	

- NP .. population size (D-dimensional vectors)
- F .. mutation scale factor
- CR .. crossover parameter

• "rand/1" strategy: $\vec{v}_i^{(G)} = \vec{x}_{r_1}^{(G)} + F \cdot (\vec{x}_{r_2}^{(G)} - \vec{x}_{r_3}^{(G)}), \quad r_1 \neq r_2 \neq r_3 \neq i$

(日) (周) (日) (日) (日)

	Background 0● ○	Algorithm for DOPs 0000000	Experimental Results 0000000000	Conclusions
The Differential Ev	olution Algorithm			
The Diffe	erential Evo	lution Algorithr	n	

- NP .. population size (D-dimensional vectors)
- F .. mutation scale factor
- *CR* .. crossover parameter

• "rand/1" strategy:
$$\vec{v}_i^{(G)} = \vec{x}_{r_1}^{(G)} + F \cdot (\vec{x}_{r_2}^{(G)} - \vec{x}_{r_3}^{(G)}), \quad r_1 \neq r_2 \neq r_3 \neq i$$
• $u_{i,j}^{(G)} = \begin{cases} v_{i,j}^{(G)} & \text{if } rand(0,1) \leq CR \text{ or } j = j_{rand}, \\ x_{i,j}^{(G)} & \text{otherwise}, \end{cases}$
where $i = 1, 2, ..., NP$ and $j = 1, 2, ..., D$.

J. Brest et al.

FEECS, Univ. of Maribor

イロト イヨト イヨト イヨト

	Background 0● ○	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions
The Differential Ev	olution Algorithm			
The Diffe	erential Evo	lution Algorithr	n	

- NP .. population size (D-dimensional vectors)
- F .. mutation scale factor
- *CR* .. crossover parameter

• "rand/1" strategy:
$$\vec{v}_i^{(G)} = \vec{x}_{r_1}^{(G)} + F \cdot (\vec{x}_{r_2}^{(G)} - \vec{x}_{r_3}^{(G)}), \quad r_1 \neq r_2 \neq r_3 \neq i$$
• $u_{i,j}^{(G)} = \begin{cases} v_{i,j}^{(G)} & \text{if } rand(0,1) \leq CR \text{ or } j = j_{rand}, \\ x_{i,j}^{(G)} & \text{otherwise}, \end{cases}$
where $i = 1, 2, ..., NP$ and $j = 1, 2, ..., D$.

• \vec{x} , \vec{u} better survives

J. Brest et al.

Dynamic Optimization using Self-Adaptive Differential Evolution

・ロト ・回ト ・ヨト ・ヨト

	Background ○○ ●	Algorithm for DOPs 0000000	Experimental Results 0000000000	Conclusions
The Self-adaptive				

The Self-adaptive DE Algorithm: *jDE* algorithm

$$F_i^{(G+1)} = \begin{cases} F_l + rand_1 \cdot F_u & \text{if } rand_2 < \tau_1, \\ F_i^{(G)} & \text{otherwise,} \end{cases}$$
$$CR_i^{(G+1)} = \begin{cases} rand_3 & \text{if } rand_4 < \tau_2, \\ CR_i^{(G)} & \text{otherwise.} \end{cases}$$
$$\tau_1 = 0.1, \tau_2 = 0.1, F_l = 0.1, F_u = 0.9 \text{ (fixed values)}$$
$$F \in [0.1, 1.0], CR \in [0, 1] \end{cases}$$

 [4] J. Brest et al. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. *IEEE TEVC*, 10(6):646–657, 2006.

J. Brest et al.

Dynamic Optimization using Self-Adaptive Differential Evolution

< ロ > < 同 > < 回 > < 回 > < 回 > <

	Background 00 0	Algorithm for DOPs ●0000000	Experimental Results 0000000000	Conclusions
1 Intro	oduction			
2 Bac	kground			

- The Differential Evolution Algorithm
- The Self-adaptive DE Algorithm
- 3 Algorithm for DOPs
- 4 Experimental Results

5 Conclusions

<ロト < 団ト < 団ト < 団ト < 団ト 三王 のへの</p>

FEECS, Univ. of Maribor

Introduct	

Background

Algorithm for DOPs

Experimental Results

Conclusions

Hybridized algorithm for solving Dynamic Optimization Problems (DOPs)

- multi-populations (random indexes r₁, r₂, and r₃ indicate vectors (individuals) that belong to same subpopulation as the trial vector x_i)
- self-adaptive control mechanism, F belongs to interval
 [0.36, 1] (F₁ = 0.36 suggested by D. Zaharie [22])
- aging at individual level (an individual that stagnates in local optimum should be reinitialized)
- overlapping search between two subpopulations (distance of the best individuals of the subpopulations)
- reinitialization (when individual is close to local best)
- archive (currently best individual is added to archive after each change is detected)

J. Brest et al.

FEECS, Univ. of Maribor

Introduction

Backgroun 00 Algorithm for DOPs

Experimental Results

Conclusions

Our algorithm – Multi-populations

- random indexes r_1 , r_2 , and r_3 indicate vectors (individuals) that belong to same subpopulation as the trial vector $\vec{x_i}$)
- more populations without any information sharing (except overlapping search between two best individuals of two subpopulations)
- subpopulations search different regions diversity is important feature in DOPs

(日) (同) (三) (三)

Background 00 0	Algorithm for DOPs 000●0000	Experimental Results 0000000000	

F belongs to interval [0.36, 1]

- D. Zaharie [22] "critical values for the control parameters of DE"
- $2F^2 2/NP + CR/NP = 0$... "can be considers to be critical" (this formula has an error in the paper)
- assume CR = 0 and NP = 10 then critical value for F is 0.308 (0.424 when NP = 5)
- we set $F_l = 0.36$ in all experiments

イロト 不得下 イヨト イヨト 二日

l o u		

Backgroun

Algorithm for DOPs

Experimental Results

Conclusions

Our algorithm – aging at individual level

- an individual that stagnates in local optimum should be reinitialized
- each individual has its own age-variable (incremented once per generation)
- three rules for aging (see Alg. 1):
 - global best is not reinitialized
 - when *local best* needs to be reinitialized, the whole subpopulation with some probability is reinitialized
 - another individual is reinitialized with some probability

FEECS, Univ. of Maribor

(日) (同) (三) (三)

l o u		

Backgroun 00 Algorithm for DOPs

Experimental Results

Conclusions

Our algorithm - Individual's improvement and aging

- when an improvement of individual occurs the *age* is set to some small value – the new promising individual should stay in population for more generations
- the distance measure and fitness are used to make decision when individual's improvement is *small* or *big* (see Alg. 4)

J. Brest et al.

FEECS, Univ. of Maribor

	Background 00 0	Algorithm for DOPs 000000€0	Experimental Results 0000000000	Conclusions
Our algo	rithm – Arc	chive		

- algorithm starts with empty archive
- currently best individual is added to the archive, after each change is detected
- an individual is selected from archive only for the first subpopulation

イロト イヨト イヨト イヨト

Background 00 0	Algorithm for DOPs 000000●	Experimental Results 0000000000	Conclusions

Parameter Settings

- F self-adaptive,
- CR self-adaptive,
- *NP* = 50,
- number of sub-populations: 5 (the size of each sub-populations was 10).

J. Brest et al.

FEECS, Univ. of Maribor

イロト イヨト イヨト イヨト

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results	Conclusions
1 Intr	oduction			
		Evolution Algorithr ve DE Algorithm	n	
3 Algo	orithm for DOI	Ps		
4 Exp	erimental Resu	ults		

5 Conclusions

J. Brest et a

FEECS, Univ. of Maribor

2

イロト イヨト イヨト イヨト

	Background 00 0	Algorithm for DOPs 0000000	Experimental Results •000000000	Conclusions
Results				

Table: CEC'09 Dynamic Optimization benchmark functions

$\overline{F_1}$	Rotation peak function
F_2	Composition of Sphere's function
F ₃	Composition of Rastrigin's function
F ₄	Composition of Griewank's function
F ₅	Composition of Ackley's function
F_6	Hybrid Composition function

J. Brest et al.

Dynamic Optimization using Self-Adaptive Differential Evolution

イロト イヨト イヨト イヨト

Background 00 0	Algorithm for DOPs 0000000	Experimental Results 0●00000000	Conclusions

Results

Table: Error Values Achieved for Problems F_1

Dimension(n)	Peaks(m)	Errors	T ₁	<i>T</i> ₂	<i>T</i> ₃	<i>T</i> ₄	T ₅	<i>T</i> ₆
10	10	Avg_best	0	0	0	0	0	0
	-	Avg_worst	0.910466	32.1705	31.7827	0.919964	18.392	32.7662
		Avg_mean	0.028813	3.5874	2.99962	0.015333	2.17757	1.1457
	-	STD	0.442537	7.83849	7.12954	0.288388	4.38812	5.72962
-	50	Avg_best	0	0	0	0	0	0
	-	Avg_worst	3.92056	30.1958	27.6823	1.21212	9.08941	33.1204
	-	Avg_mean	0.172355	4.08618	4.29209	0.0877388	0.948359	1.76542
	-	STD	0.763932	6.4546	6.74538	0.24613	1.76552	5.82652
T ₇ (5-15)	10	Avg_best	-	—	0	-	-	—
	-	Avg_worst	-	—	34.8377	—	—	—
	-	Avg_mean	—	—	3.5017	—	—	—
	-	STD	—	—	7.89858	—	—	—
-	50	Avg_best	—	—	0	-	—	—
		Avg_worst	—	—	29.768	—	—	—
		Avg_mean	-	—	4.36913	—	-	—
	-	STD	—	—	6.9321	—	—	—

イロン イロン イヨン イヨン ニヨーダ

J. Brest et al.

FEECS, Univ. of Maribor

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 00●00000000	Conclusions
Results				

Dimension(n)	Errors	<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	<i>T</i> ₄	<i>T</i> ₅	<i>T</i> ₆
10	Avg_best	0	0	0	0	0	0
	Avg_worst	15.4426	435.019	468.43	10.6608	459.147	49.5327
	Avg_mean	0.963039	43.0004	50.1906	0.793141	67.0523	3.36653
	STD	3.08329	114.944	124.015	2.53425	130.146	12.9738
T7(5-15)	Avg_best	—	—	0	_	—	—
	Avg_worst	—	—	226.332	_	_	—
	Avg_mean	—	—	13.2524	_	—	—
	STD	—	—	45.7797	—	—	—

J. Brest et al.

FEECS, Univ. of Maribor

3

メロト メロト メヨト メヨト

	Background 00 0	Algorithm for DOPs 0000000	Experimental Results 000●0000000	Conclusions
Results				

Dimension(n)	Errors	<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₃	<i>T</i> ₄	<i>T</i> ₅	<i>T</i> ₆
10	Avg_best	0	9.70434e-08	3.13019e-10	0	5.35102e-10	8.17124e-14
-	Avg_worst	238.417	938.858	944.695	922.236	874.852	1226.38
-	Avg_mean	11.3927	558.497	572.105	65.7409	475.768	243.27
-	STD	58.1106	384.621	386.09	208.925	379.89	384.98
T ₇ (5-15)	Avg_best	-	_	0	—	—	—
-	Avg_worst	-	—	853.061	—	—	—
	Avg_mean	—	_	153.673	—	—	—
	STD	—	-	286.379	—	—	_

J. Brest et al.

FEECS, Univ. of Maribor

3

メロト メポト メヨト メヨト

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 0000€000000	Conclusions
Results				

Dimension(n)	Errors	<i>T</i> ₁	<i>T</i> ₂	T ₃	Τ ₄	T ₅	<i>T</i> ₆
10	Avg_best	0	0	0	0	0	0
	Avg_worst	19.623	475.7	544.92	16.6057	510.193	28.4483
	Avg_mean	1.48568	49.5044	51.9448	1.50584	69.4395	2.35478
	STD	4.47652	135.248	141.78	4.10062	144.041	5.78252
T7(5-15)	Avg_best	_	_	0	_	_	—
	Avg_worst	_	_	163.727	_	_	—
	Avg_mean	_	_	11.7425	_	_	—
	STD	_	_	39.4469	_	_	—

J. Brest et al.

FEECS, Univ. of Maribor

3

メロト メポト メヨト メヨト

	Background 00 0	Algorithm for DOPs	Experimental Results	Conclusions
Results				

Dim.(n)	Errors	<i>T</i> ₁	T ₂	T ₃	<i>T</i> ₄	<i>T</i> ₅	<i>T</i> ₆
10	Avg_best	4.10338e-14	4.16556e-14	4.15668e-14	4.08562e-14	4.24549e-14	4.08562e-14
-	Avg_worst	4.89413	9.6899	10.1371	4.75098	9.28981	4.78684
	Avg_mean	0.159877	0.333918	0.357925	0.108105	0.409275	0.229676
	STD	1.02554	1.64364	1.83299	0.826746	1.90991	0.935494
T7 (5-15)	Avg_best	—	—	4.12115e-14	-	—	-
	Avg_worst	—	-	11.8188	-	—	-
	Avg_mean	—	—	0.434294	—	—	—
	STD	—	—	2.22792	—	—	—

FEECS, Univ. of Maribor

2

メロト メポト メヨト メヨト

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 000000€0000	Conclusions
Results				

Dimension(n)	Errors	<i>T</i> ₁	<i>T</i> ₂	T ₃	Τ ₄	T ₅	<i>T</i> ₆
10	Avg_best	0	0	0	0	0	0
	Avg_worst	32.7204	51.8665	84.519	38.7914	191.895	45.0354
	Avg_mean	6.22948	10.3083	10.954	6.78734	14.9455	7.8028
	STD	10.4373	13.2307	23.2974	10.1702	45.208	10.9555
T ₇ (5-15)	Avg_best	—	—	0	—	—	—
	Avg_worst	_	—	58.9448	_	_	—
	Avg_mean	_	—	10.736	_	_	—
	STD	_	—	14.7267	_	_	—

J. Brest et al.

FEECS, Univ. of Maribor

3

メロト メロト メヨト メヨト

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 0000000€000	Conclusions
Results				

Table: Algorithm Overall Performance

	F ₁ (10)	F ₁ (50)	F ₂	F ₃	F ₄	F ₅	F ₆
<i>T</i> ₁	0.014768	0.0146876	0.0211049	0.0157107	0.0206615	0.021766	0.0170472
<i>T</i> ₂	0.0136901	0.0135926	0.0135271	0.00298238	0.013148	0.0208661	0.0139488
<i>T</i> ₃	0.0138256	0.0135304	0.0130808	0.00281439	0.013545	0.0209286	0.0141912
<i>T</i> ₄	0.0147164	0.0146941	0.0210035	0.0127621	0.0199268	0.0221962	0.0153046
<i>T</i> ₅	0.0139415	0.0143644	0.0123976	0.0044056	0.012376	0.0213094	0.0155184
<i>T</i> ₆	0.0141265	0.013874	0.017776	0.00734523	0.0179501	0.0207361	0.0139512
<i>T</i> ₇	0.00911221	0.00898569	0.0101876	0.00549392	0.0101813	0.0137894	0.00942562
Mark	0.0941803	0.0937288	0.109078	0.0515143	0.107789	0.141592	0.099387
Perform	nance (sumed th	ie mark obtaine	d for each case	and multiplied	by 100): 69.72	69	

J. Brest et al.

FEECS, Univ. of Maribor

3

イロト イヨト イヨト イヨト

Introductio	

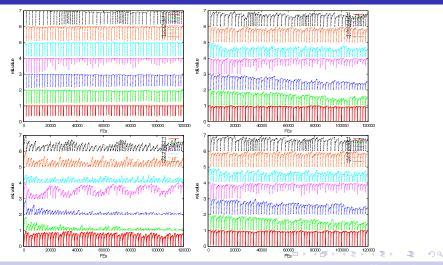
Backgroun

Algorithm for DOPs

Experimental Results

Conclusions

Convergence graphs $F_1 - F_4$



J. Brest et al.

FEECS, Univ. of Maribor

Introduction

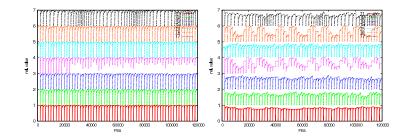
Backgroui 00 Algorithm for DOPs

Experimental Results

< □ > < ^[] >

Conclusions

Convergence graphs F_5 , and F_6



J. Brest et al.

FEECS, Univ. of Maribor

Introduction Bac 00 0	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions
Discussion			

- our algorithm performs very well on small step (T_1) and chaotic (T_4) change types for $F_1 F_4$
- *F*₅: it obtained good results over all changed types
- *F*₆: it obtained very well results over all changed types
- *F*₃ is the most difficult one among all test problems

< ロ > < 同 > < 回 > < 回 > < 回 > <

	Background 00 0	Algorithm for DOPs 00000000	Experimental Results 0000000000	Conclusions	
Conclusions					

jDE algorithm with multi-populations and aging mechanism was evaluated on CEC'09 test problems – special session on dynamic optimization problems.

Overall performance: 69.7

Future plans:

- to apply additional co-operation among sub-populations
- to use sub-populations of different sizes
- to improve the usage of the archive (here, a simple variant of the archive is used)

・ロン ・四と ・ヨン ・ヨン

	Background 00 0	Algorithm for DOPs 0000000	Experimental Results 0000000000	Conclusions
Thank Y	ou			

Questions?

J. Brest et al.

FEECS, Univ. of Maribor

2

・ロト ・四ト ・ヨト ・ヨト